24 research outputs found

    Efficient and Low-complexity Hardware Architecture of Gaussian Normal Basis Multiplication over GF(2m) for Elliptic Curve Cryptosystems

    Get PDF
    In this paper an efficient high-speed architecture of Gaussian normal basis multiplier over binary finite field GF(2m) is presented. The structure is constructed by using regular modules for computation of exponentiation by powers of 2 and low-cost blocks for multiplication by normal elements of the binary field. Since the exponents are powers of 2, the modules are implemented by some simple cyclic shifts in the normal basis representation. As a result, the multiplier has a simple structure with a low critical path delay. The efficiency of the proposed structure is studied in terms of area and time complexity by using its implementation on Vertix-4 FPGA family and also its ASIC design in 180nm CMOS technology. Comparison results with other structures of the Gaussian normal basis multiplier verify that the proposed architecture has better performance in terms of speed and hardware utilization

    High-speed VLSI implementation of Digit-serial Gaussian normal basis Multiplication over GF(2m)

    Get PDF
    In this paper, by employing the logical effort technique an efficient and high-speed VLSI implementation of the digit-serial Gaussian normal basis multiplier is presented. It is constructed by using AND, XOR and XOR tree components. To have a low-cost implementation with low number of transistors, the block of AND gates are implemented by using NAND gates based on the property of the XOR gates in the XOR tree. To optimally decrease the delay and increase the drive ability of the circuit the logical effort method as an efficient method for sizing the transistors is employed. By using this method and also a 4-input XOR gate structure, the circuit is designed for minimum delay. The digit-serial Gaussian normal basis multiplier is implemented over two binary finite fields GF(2163) and GF(2233) in 0.18μm CMOS technology for three different digit sizes. The results show that the proposed structures, compared to previous structures, have been improved in terms of delay and area parameters

    High-speed Hardware Implementations of Point Multiplication for Binary Edwards and Generalized Hessian Curves

    Get PDF
    In this paper high-speed hardware architectures of point multiplication based on Montgomery ladder algorithm for binary Edwards and generalized Hessian curves in Gaussian normal basis are presented. Computations of the point addition and point doubling in the proposed architecture are concurrently performed by pipelined digit-serial finite field multipliers. The multipliers in parallel form are scheduled for lower number of clock cycles. The structure of proposed digit-serial Gaussian normal basis multiplier is constructed based on regular and low-cost modules of exponentiation by powers of two and multiplication by normal elements. Therefore, the structures are area efficient and have low critical path delay. Implementation results of the proposed architectures on Virtex-5 XC5VLX110 FPGA show that then execution time of the point multiplication for binary Edwards and generalized Hessian curves over GF(2163) and GF(2233) are 8.62µs and 11.03µs respectively. The proposed architectures have high-performance and high-speed compared to other works

    Extractors for Jacobians of Binary Genus-2 Hyperelliptic Curves

    No full text
    Extractors are an important ingredient in designing key exchange protocols and secure pseudorandom sequences in the standard model. Elliptic and hyperelliptic curves are gaining more and more interest due to their fast arithmetic and the fact that no subexponential attacks against the discrete logarithm problem are known. In this paper we propose two simple and efficient deterministic extractors for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H defined over Fq, where q = 2ⁿ, called the sum and product extractors. For non-supersingular hyperelliptic curves having a Jacobian with group order 2m, where m is odd, we propose the modified sum and product extractors for the main subgroup of J(Fq). We show that, if D∈J(Fq) is chosen uniformly at random, the bits extracted from D are indistinguishable from a uniformly random bit-string of length n.16 page(s
    corecore